Degradation of Dyestuffs from Industrial Effluents using an Ultrasonic Bath in the Presence and Absence of Various Inorganic Salts and H_2O_2

Md. Monjurul Islam1, Md. Ashifuzzaman2, Md. Shamim Reza3, Jerin Alauddin1, Sumon Ganguly4, B. M. Saifur Rahman1, Most. Shahida Khatun1, Md. Rashidul Islam1, Md. Jahangir Hossain5 and Md. Helal Uddin1

1Department of Applied Chemistry and Chemical Engineering, Faculty of Applied Science and Technology, Islamic University, Kushitia-7003, Bangladesh.
2Department of Physics, Government M. M. College, National University, Dhaka-Mymensingh Hwy, Bangladesh.
3Department of Research and Development, ACME Laboratories Ltd. Dhulivita, Dhamrai, Dhaka-1350, Bangladesh.
4Department of Applied and Environmental Chemistry, University of Chittagong (CU), Chittagong 4331, Bangladesh.
5Department of Chemical Engineering, Faculty of Engineering and Technology, Jessore University of Science and Technology, Jessore-7408, Bangladesh.

Authors’ contributions

This work was carried out in collaboration between all authors. Authors MMI, BMSR, MSK, MJH and MHU designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors MA, MSR, JA, SG and MRI managed the analyses of the study and the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJOPACS/2018/42490

Editor(s):
(1) Sankar Moni Borah, Department of Applied Sciences, Gauhati University, India.

Reviewers:
(1) Ioana Stanciu, University of Bucharest, Romania.
(2) Alok Chaturvedi, S.P.C. Govt. College, India.
(3) Okon U. Abakedi, University of Uyo, Nigeria.

Complete Peer review History: http://www.sciencedomain.org/review-history/25754

Received 12th May 2018
Accepted 21st July 2018
Published 1st August 2018

ABSTRACT

Textile industries consume various dyestuffs for dyeing of fabrics. These dyestuffs are often present in industrial wastewater, have a serious impact on the environment and personal health. This report describes a system developed to degrade the dyestuffs using sonochemical reactions. The
degradation of dye molecules in aqueous solution was investigated using 50-60 Hz ultrasonic bath, and all solutions volumes were 50 mL where the concentration of dye solution was 50 mg/L. Experiments were performed at an initial concentration of two types of dye solutions, i.e. Methylene Blue (MB) and Methyl Orange (MO) in absence and presence of inorganic salts (NaCl, Na₂SO₄, NaNO₃) and catalyst, i.e. H₂O₂ at room temperature. This research investigated the degradation of dye molecules with an aim of cost-effective method. In sonochemical degradation of dyestuffs in sonicator, high degradation rate for MB was obtained in the presence of additives H₂O₂ and followed the order: MB+H₂O₂> MB+ Na₂CO₃ > MB+Na₂SO₄> MB + NaCl > MB (0 mM salt & additive) > MB+NaNO₃. Whereas, in case of MO, high rate was obtained in the presence of Na₂SO₄ and then followed the order: MO+Na₂SO₄> MO + NaNO₃> MO+H₂O₂> MO + NaCl> MO (0 mM salt & additive) > MO+Na₂CO₃.

Keywords: Methyl orange; methylene blue; sonolysis; inorganic salts; H₂O₂.

1. INTRODUCTION

The organic dyes widely used in various industries like textile processing, paper making, printing and cosmetic industries etc. [1,2]. Often produce significant amount of toxic coloured wastewater, which has led to severe pollution of surface water and groundwater, inducing severe threat to the natural ecosystem [3–6]. Several industries use the synthetic dyestuffs extensively, and it is estimated that 10–15% of the dyestuffs remain in the effluent during the dyeing processes. Some azo dyestuffs and their reaction products also have the carcinogenic effects. Thus, the treatment of these wastewaters containing dyestuffs is important for the protection of waters and the environment [7]. The treatment of dye-containing wastewater by conventional methods such as biological treatment [8,9], coagulation [10–11], filtration [12] and adsorption [13–15], solvent extraction, incineration, chemical dehalogenation, biodegradation, flocculation, air sparging and are quite ineffective for the decolorization of wastewater since it is very difficult to remove the dyestuffs using these processes because of their low molecular weight and high-water solubility [16]. Other processes, such as coagulation and adsorption, hardly transfer the pollutant from the wastewater to other media that produce sludge and cause disposal problems [17]. In the past few years, advanced oxidation processes (AOPs), as the most promising and highly competitive innovative wastewater treatment methods for the removal of organic pollutants, have been widely developed [18–20]. AOPs are based on the physicochemical process that creates reactive oxygen species (ROS) at ambient temperature and pressure with or without catalyst and subsequently converts organic pollutants into CO₂ and H₂O without the production of any types of secondary wastes [21,22]. Among them, ultrasonic degradation of dyestuffs was found to be a very useful method for the removal of organic compounds [23,24]. The ultrasonic irradiation of liquids generates cavitation bubbles which grow during the compression cycles until they reach a maximum size, which is known as critical size and implode generating heat and highly reactive radical species. Inside cavitation bubbles, the temperature and pressure rise to the order of 5000 K and 100 MPa, respectively. For such conditions, water molecules degrade releasing OH⁺ and H⁺ radicals [Equations. (1) – (8)].

\[\text{H}_2\text{O} \rightarrow \text{H}^+ + \text{OH}^- \] \hspace{1cm} (1)

\[\text{H}^+ + \text{OH}^- \rightarrow \text{H}_2\text{O} \] \hspace{1cm} (2)

\[2\text{H}^+ \rightarrow \text{H}_2 \] \hspace{1cm} (3)

\[2\text{OH}^+ \rightarrow \text{H}_2\text{O}_2 \] \hspace{1cm} (4)

\[2\text{OH}^+ \rightarrow \text{O}_2 + \text{H}_2\text{O} \] \hspace{1cm} (5)

\[2\text{O}^- \rightarrow \text{O}_2 \] \hspace{1cm} (6)

\[\text{O}^- + 2\text{H}^+ \rightarrow \text{H}_2\text{O} \] \hspace{1cm} (7)

\[\text{O}^- + \text{H}_2\text{O} \rightarrow \text{H}_2\text{O}_2 \] \hspace{1cm} (8)

Inside the bubble or in the liquid shell surrounding the cavity, these radicals can combine in various ways or react with the gases and vapor present, leading to the detection of \(\text{H}_2\text{O}_2 \), \(\text{HNO}_2 \) and \(\text{HNO}_3 \) [25] in the medium as shown by Equations. (9) – (14).

\[\text{N}_2 \rightarrow 2\text{N}^- \] \hspace{1cm} (9)

\[\text{O}_2 \rightarrow 2\text{O}^- \] \hspace{1cm} (10)
N• + O• → NO (11)
NO + O• → NO₂ (12)
OH• + NO → HNO₂ (13)
OH• + NO₂ → HNO₃ (14)

These radicals can oxidize the solute occasioning its degradation. A higher ultrasonic frequency would be more suitable for dyestuff degradation. The present study verifies the influence of the presence of salts (NaCl, NaNO₃, Na₂CO₃, Na₂SO₄) and additives (H₂O₂) on dyestuff degradation processes. Frequencies in the range of 50-60 Hz and power inputs of 320 W were tested in order to optimize the degradation conditions for Methylene Blue (basic dye) and Methyl Orange (azo dye) solutions. Ultrasonic power is one of the important factors for sonochemistry. Calorimetry is another one of the most frequently used methods for measuring the actual ultrasonic power input for a solution [26,27]. Eq. (15) gives the calculated ultrasonic output power (P).

\[P = C_p M \left(\frac{dT}{dt} \right) \] (15)

Here, \(C_p = \) heat capacity of water
\(M = \) mass of water
\(T = \) temperature of the sample solution
\(t = \) ultrasonic irradiation time.

The effects of sonic waves and wave properties on chemical systems are discussed under the study of sonochemistry. Ultrasound causing the chemical effects does not directly interact with molecular species. Studies have shown that sonochemistry or sonoluminescence cannot consider any direct contact of the acoustic field with chemical species. Instead, sonochemistry is related to acoustic cavitation: the formation, growth, and implosive collapse of bubbles in a liquid. The growth of cavitation bubble mainly depends on the sound intensity. The formation and growth of the cavitation bubble are shown in (Fig.1). Sometimes the cavity expansion occurs very quickly by high-intensity ultrasound during the negative-pressure cycle so that the positive pressure in the next cycle fails to reduce the size of the cavity. For low intensity ultrasound, the size of the cavity oscillates in phase with the expansion and compression cycles and in this case the bubble surface area is comparatively larger during expansion cycles than during compression cycles. There is a critical size of cavitation bubble which depends on the ultrasound frequency and in this situation the cavity can absorb energy more efficiently from ultrasound and grow more rapidly. But when a cavity experiences a very rapid growth it can no longer absorb energy as efficiently from the sound waves and thus the liquid rushes in and the cavity implodes. Gas and vapors are compressed inside the cavity and this generates heat, which finally produces a short-lived localized hot spot (Fig. 2).

In brief, the cavitational collapse creates an unusual environment for a chemical reaction in terms of enormous local temperatures and pressures. Again, the most sophisticated models predict temperatures of thousands of degrees Celsius, pressures of from hundreds to thousands of atmospheres and heating times of less than a microsecond. Various experiments were done for sonochemical degradation of organic compounds in the presence of various chemical additives. The results are illustrated in Table 1:

2. EXPERIMENTAL SECTION

The chemicals used for the experiment are:

i) Methylene Blue (Dye content ≥ 82%; Merck KGaA, Germany) IUPAC name 7-(dimethylamino) phenothiazin-3-ylidene]-dimethyl azanium chloride.

Methylene blue (or MB) is a basic aniline dye with the molecular formula C₁₆H₁₈N₃SCl. At room temperature, it appears as a solid, odorless, dark green powder that yields a blue solution when dissolved in water.

Fig. 1. Cavitation bubble formation and collapse
Fig. 2. Graphical representation of bubble growth and implosion (Suslick et al. 1989)

Table 1. Sonochemical degradation of various organic compounds in the presence of various chemical additives

<table>
<thead>
<tr>
<th>No.</th>
<th>Organic pollutants</th>
<th>Additives</th>
<th>Reaction conditions</th>
<th>Important findings</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Acid Blue 25 (AB25)</td>
<td>FeSO₄, NaCl, CaCl₂, and NaHCO₃</td>
<td>100 mL of 50 mg/L AB25; 1700 kHz, 14 W</td>
<td>The rate of degradation was increased with the addition of 10 mg/L of Fe²⁺ and 386 mg/L of H₂O₂. The rate of degradation was also increased in the presence of salts.</td>
<td>[28]</td>
</tr>
<tr>
<td>2.</td>
<td>Rhodamine B (RHB)</td>
<td>Fe⁰, Fe²⁺, Fe³⁺, CCl₄, H₂O₂, t-butanol, Na₂SO₄, Sucrose and Glucose</td>
<td>300 mL of 5 mg/L RHB; 300 kHz, 60 W</td>
<td>The rate of degradation was increased with the addition of 5 mg/L of Fe²⁺, followed by Fe³⁺ and Fe⁰. The rate of degradation was also increased by the addition of 50, 100 and 200 mg/L CCl₄.</td>
<td>[29]</td>
</tr>
<tr>
<td>3.</td>
<td>Malachite Green (MG)</td>
<td>Ethanol, 2-propanol and iso-butanol</td>
<td>1000 mL of 5 mg/L MG; 35 kHz and 49 W</td>
<td>The rate of degradation was decreased by using iso-butanol followed by 2-propanol and ethanol. It's a pseudo first-order reaction kinetics.</td>
<td>[30]</td>
</tr>
<tr>
<td>4.</td>
<td>C.I. Reactive Black 5 (RB5)</td>
<td>O₃</td>
<td>500 mL of 500 mg/L RB5; 20 kHz, 88 w/L</td>
<td>Decolorized by using the solution of US/O₃ within 10mins. It is a pseudo first-order reaction kinetics.</td>
<td>[31]</td>
</tr>
<tr>
<td>5.</td>
<td>Reactive red (RR)/Direct Yellow (DY)</td>
<td>CCl₄, tert-butanol, TiO₂, zero valent Cu (Cu⁰)</td>
<td>100 mL of 28.75 µM RR/DY; 861 kHz, 0.23 and 0.46 W/mL</td>
<td>The rate of degradation was increased in the presence of 2000 µM of CCl₄. The rate of degradation increases especially in the presence of 0.1-1.0 g/L TiO₂ followed by CCl₄ and Cu⁰.</td>
<td>[32]</td>
</tr>
</tbody>
</table>
Fig. 3. Structure of methyl blue

\[
C_{15}H_{18}C_6N_3S \quad MW = 319.86
\]

Methyl blue (Merck KGaA, Germany)
IUPAC name sodium;4-[[4-(dimethyl amino)phenyl]diazenyl]benzene sulfonate

Fig. 4. Structure of methyl orange

Methyl orange is a pH indicator and due to its clear color change, it is very often used in titrations. Methyl orange changes color at the pH of a mid-strength acid and is usually used in titrations for acids. Unlike a so-called universal indicator, methyl orange does not have a full spectrum of color change but has a sharper end point. Methyl orange is prepared from sulfanilic acid and N,N-dimethylaniline. The first product obtained from the coupling is the bright red acid form of methyl orange, called helianthin. In the base, helianthin is converted to the orange sodium salt, called methyl orange.

iii) Various Additives like:

a) Salts (NaCl, NaNO₃, Na₂SO₄, Na₂CO₃)
b) Additive (H₂O₂)

all were purchased from Merck KGaA 64271 Darmstadt, Germany.
The Apparatus used are:

The equipments used are:

i. Sonicator Machine (Soniclean 250HT; 50-60Hz; 320W)
ii. UV-Vis Spectrophotometer (UV Mini 1240; Shimadzu Company)

Procedure

The schematic diagram of the experimental setup is shown in the Fig. 5. First of all, the power of the sonicator is measured calorimetrically using equation-15. Then, a conical flask with a total volume of 100 ml of 50 mg/L dye solution was used for ultrasonic irradiation under air at room temperature around 24°C. The sonicated solution was extracted every (0, 3, 7 and 10 min) by a glass syringe (1 ml) without exposing the sample to air. The glass vessel was flat bottomed and mounted at a constant position (4.0 mm from the oscillator). The sonicated solutions were analyzed by a UV-Vis spectrophotometer (Shimadzu UV-1650).

Fig. 5. Schematic diagram of the experimental set-up
3. RESULTS AND DISCUSSION

3.1 Calorimetric Power Measurement

From the Table 2 and Fig. 6, Show that the temperature at the site of the reaction is increasing with sonication time. Again, the reaction rate increases with temperature. So, we can say that the degradation rate of the dye stuff will increase with the elongation of sonication time.

![Fig. 6. The measurement of temperature change with increasing sonication time](image)

3.2 Degradation of Dyes

In case of Methylene Blue (MB) as it can be seen from Fig. 7, the concentration of MB decreased gradually as the sonication time increased. So, it can be said that MB degrades gradually with the increase in sonication time. When no sonication occurred the concentrations of MB were 0.1563 mM. After sonicating for 3 mins, 7 mins and 10 mins, the concentration became 0.1524 mM, 0.1446 mM and 0.1403 mM respectively. With the addition of NaCl, degradation of MB was slightly enhanced up to 0.0014 mM when compared with the absence of NaCl salt. The addition of NaNO₃ shows a higher degradation property at an initial state, but finally, it fails to keep the degradation rate higher than that of with the absence of NaNO₃ salt. The addition of Na₂CO₃ enhanced the degradation of MB up to 0.0053 mM whereas Na₂SO₄ slightly enhanced the degradation of MB up to 0.0027 mM. The positive effects of these inorganic salts on the destruction of MB were very little at an initial state. But finally, it has a great impact on the degradation except for NaNO₃.

Again, in the case of Methyl Orange (MO) from Fig. 8, the concentration of MO decreased gradually with the increase in sonication time. When no sonication occurred the concentrations of MO was 0.1528 mM. After sonicating for 3 mins, 7 mins and 10 mins, the concentration became 0.1518 mM, 0.1516 mM and 0.1496 mM respectively. The addition of NaCl, NaNO₃, Na₂CO₃, Na₂SO₄ enhanced the degradation of MB up to 0.0038 mM, 0.0175 mM, 0.1496 mM and 0.0209 mM respectively when compared with the absence of inorganic salts. The positive effects of these inorganic salts on the destruction of MO were very little at an initial state. But finally, it has a great impact on the degradation except NaNO₃. But finally, it has a great impact on the degradation rate except NaNO₃. So, there may be an optimum amount of these inorganic salts to increase the degradation rate. An excessive amount of salts may interrupt the introduction of ultrasound into the liquid [33]. Addition of salts to aqueous solution pushes molecules from the bulk aqueous phase to the bulk–bubble interface. The presence of salt may increase the hydrophilicity, the surface tension and ionic strength of the aqueous phase and decrease the vapor pressure [34-35]. All these factors help in collapsing of the bubbles more violently, resulting in high degradation of dye.

In order to evaluate the effect of H₂O₂ alone on the degradation of dyes, control experiments were carried out by adding H₂O₂. The dosage of added hydrogen peroxide was the same as the amounts used in the presence of ultrasound. The results indicate that a similar dosage of H₂O₂ in absence of ultrasound produce low degradation of dye molecules, even after long times (240 min). Thus, hydrogen peroxide alone has a very limited effect on the degradation rate of dye molecules. Throughout the addition of hydrogen peroxide in the presence of ultrasound enhances the degradation rate of both MB and MO due to additional free radicals generation. It can be concluded that the controlling mechanism of dye molecule degradation is the free radical attack. The degradation rate was appreciably increased by the addition of H₂O₂.

The H₂O₂ may be mainly present not inside the cavitation bubbles but in the bulk solution due to the high-water solubility and the low volatility. The lower intensification of degradation rate in the presence of high concentrations of H₂O₂ may be attributed to the increased level of OH⁺ radical scavenging by H₂O₂ itself (reaction (16)).

\[
\text{H}_2\text{O}_2 + \text{OH}^+ \rightarrow \text{H}_2\text{O} + \text{HOO}^+ \tag{16}\]

Similar results for the enhancement of sonolytic degradation of dyes in the presence of hydrogen peroxide were reported in literature [36,37].
Table 2. Measurement of temperature changes

<table>
<thead>
<tr>
<th>Observation</th>
<th>Sonication time (sec)</th>
<th>Initial temperature (°C)</th>
<th>Final temperature (°C)</th>
<th>Temperature change (°C)</th>
<th>Actual power (Watt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>24.7</td>
<td>25.0</td>
<td>0.3</td>
<td>4.180</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>25.2</td>
<td>25.6</td>
<td>0.4</td>
<td>2.787</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>25.6</td>
<td>26.1</td>
<td>0.5</td>
<td>2.322</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>26.0</td>
<td>26.6</td>
<td>0.6</td>
<td>2.090</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td>26.4</td>
<td>27.1</td>
<td>0.7</td>
<td>1.951</td>
</tr>
<tr>
<td>6</td>
<td>180</td>
<td>26.7</td>
<td>27.6</td>
<td>0.8</td>
<td>1.858</td>
</tr>
</tbody>
</table>

Finally, from the Figs. 7 and 8 it can be stated that, in sonochemical degradation of dyestuffs in sonicator, high degradation rate for MB was obtained in the presence of additives H₂O₂ and followed the order: MB+H₂O₂> MB+ Na₂CO₃ > MB+Na₂SO₄> MB + NaCl> MB (0 mM salt & additive) > MB+NaNO₃. Whereas, in case of MO, high rate was obtained in the presence of Na₂SO₄ and then followed the order: MO+Na₂SO₄> MO + NaNO₃> MO+H₂O₂> MO + NaCl> MO (0 mM salt & additive) > MO+Na₂CO₃. But in both cases, it can be seen that H₂O₂ has a great impact on degradation of dye molecules, due to formation OH⁺ radicals. So, H₂O₂ can be used as an additive effectively. He et al. 2016 [38] investigated the sonochemical degradation of MO in the presence of Bi₂WO₆ under ultrasonic irradiation is related to the generation of reactive oxygen species (ROS), in which both singlet molecular oxygen (¹O₂) and hydroxyl radical (•OH) play important roles in the sonochemical degradation of MO. Our research has also supported that results.
4. CONCLUSION

The present work has shown that Dye can be effectively removed from water by ultrasound irradiation. This study demonstrates that sonochemical degradation occurs mainly through reactions with hydroxyl radicals. It was found that the initial degradation of dye molecule increased. The addition of salt and additives enhanced the rate of degradation. So, it can be concluded after this research work that, the dye stuffs can be removed from water by using the ultrasound system in presence of salt and additives effectively.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

© 2018 Islam et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sciencedomain.org/review-history/25754